4.1 Complex Number
4.1.1 Definition
Any number of the form is called a complex number, where and are real numbers and is the imaginary unit.
The real part of the complex number, , is , and is the imaginary part of .
4.1.2 Arithmetic Operations
Addition
(1)
Subtraction
(2)
Multiplication
(3)
Division
(4)
4.1.3 Conjugate
If is a complex number, then the complex conjugate, or simply the conjugate, of is
(5)
The arithmetic operations of a conjugate are as follows
(6)
4.1.4 Modulus or Absolute Value
The absolute value of is defined as
(7)
4.1.5 Geometric Interpretation
The following coordinate plane is known as the complex plane or simply the z-plane. The -axis is the real axis, and the -axis is the imaginary axis. The absolute value of a complex number is the distance of that number to the origin.
4.2 Powers and Roots
4.2.1 Polar Form
The polar form of a complex number, , is
(8)
4.2.2 DeMoivre’s Formula
(9)
4.2.3 Integers Powers of
The integer powers of a complex number can be found easily by applying the DeMoivre’s formula on the polar form of as follows
(10)
(11)
(12)
4.2.4 Roots of
A number is the root of a complex number , if .
Let’s assume that , then we can find the values of and as follows
(13)
(14)
So, , and
(15)
By summarizing the results, the roots of a given non-zero complex number are
(16)
4.3 Problems
Reference
Dennis G. Zill. Advanced Engineering Mathematics, edition. Jones Bartlett Learning. 2016.