Differentiation and Integration

Differentiation Rules

Constant. \quad \dfrac{d}{dx} c = 0 .

Constant Multiple. \quad \dfrac{d}{dx} \big( c f(x) \big) = c f^\prime (x) .

Sum. \quad \dfrac{d}{dx} \big( f(x) \pm g(x) \big) = f^\prime (x) \pm g^\prime (x) .

Product. \quad \dfrac{d}{dx} \big( f(x) g(x) \big) = f^\prime (x) g(x) + f(x) g^\prime (x) .

Quotient. \quad \dfrac{d}{dx} \big( \dfrac{f(x)}{g(x)} \big) = \dfrac{f^\prime (x) g(x) - f(x) g^\prime (x) }{g^2(x)} .

Chain. \quad \dfrac{d}{dx} f \big( g (x) \big) = f^\prime \big( g(x) \big) g^\prime (x) .

Power. \quad \dfrac{d}{dx} x^n = n x^{n-1} .

Power. \quad \dfrac{d}{dx} \big( g(x) \big)^n = n \big( g(x) \big)^{n-1} g^\prime (x) .

Trigonometric.

\frac{d}{dx} \sin x = \cos x .

\frac{d}{dx} \cos x = - \sin x .

\frac{d}{dx} \tan x = \sec^2 x .

\frac{d}{dx} \cot x = - \csc^2 x .

Inverse Trigonometric.

\frac{d}{dx} \sin^{-1} x =  \dfrac{1}{\sqrt{1-x^2}}.

\frac{d}{dx} \cos^{-1} x = - \dfrac{1}{\sqrt{1-x^2}} .

\frac{d}{dx} \tan^{-1} x = \dfrac{1}{1+x^2} .

\frac{d}{dx} \cot^{-1} x = - \dfrac{1}{1+x^2} .

Hyperbolic.

\frac{d}{dx} \sinh x = \cosh x .

\frac{d}{dx} \cosh x = \sinh x .

\frac{d}{dx} \tanh x = \dfrac{1}{\cosh ^2 x} .

\frac{d}{dx} \coth x = -\dfrac{1}{\sinh ^2 x}.

Inverse Hyperbolic.

\frac{d}{dx} \sinh^{-1} x = \dfrac{1}{\sqrt{x^2+1}}  .

\frac{d}{dx} \cosh^{-1} x = \dfrac{1}{\sqrt{x^2-1}} .

\frac{d}{dx} \tanh^{-1} x = \dfrac{1}{1-x^2}, \quad |x| < 1 .

\frac{d}{dx} \coth^{-1} x = \dfrac{1}{1-x^2}, \quad |x| > 1 .

Exponential.

\frac{d}{dx} e^x = e^x .

\frac{d}{dx} b^x = b^x \big( \ln b \big) .

Logarithmic.

\frac{d}{dx} \ln |x| = \dfrac{1}{x} .

\frac{d}{dx} \log_b x = \dfrac{1}{x \big( \ln x \big)} .

Of an Integral.

\frac{d}{dx} \int_a^x g(t) dt = g(x) .

\frac{d}{dx} \int_a^b g(x,t) dt = \int_a^b \frac{\partial}{\partial x} g(x,t) dt .

Integration Formulas

\int u^n du = \dfrac{u^{n+1}}{n+1} + C.

\int \dfrac{1}{u} du = \ln |u| + C .

\int e^u du = e^u + C.

\int b^u du = \dfrac{1}{\ln b} b^u + C .

\int \sin u du = - \cos u + C .

\int \cos u du = \sin u + C .

\int \sec^2 u du = \tan u + C .

\int \csc^2 u du = - \cot u + C .

\int \tan u du = - \ln | \cos u | + C .

\int \cot u du = \ln | \sin u | + C .

\int \sec u du = \ln \big( | \sec u + \tan u | \big) + C .

\int \csc u du = \ln \big( | \csc u - \cot u | \big) + C .

\int \sin^2 u du = \frac{1}{2} u - \frac{1}{4} \sin 2u + C .

\int \cos^2 u du = \frac{1}{2} u + \frac{1}{4} \sin 2u + C .

\int \dfrac{1}{\sqrt{a^2 - u^2}} du = \sin^{-1} \dfrac{u}{a} + C .

\int \dfrac{1}{\sqrt{a^2 + u^2}} du = \ln \big( | u + \sqrt{a^2 + u^2} | \big) + C .

\int \sqrt{a^2 - u^2} du = \dfrac{u}{2} \sqrt{a^2 - u^2} + \dfrac{a^2}{2} \sin^{-1} \dfrac{u}{a} + C .

\int \sqrt{a^2 + u^2} du = \dfrac{u}{2} \sqrt{a^2 + u^2} + \dfrac{a^2}{2} \ln \big( | u + \sqrt{a^2 + u^2} | \big) + C .

\int \dfrac{1}{a^2 - u^2} du = \dfrac{1}{a} \ln | \dfrac{a+u}{a-u} | + C .

\int \dfrac{1}{a^2 + u^2} du =  \dfrac{1}{a} \tan^{-1} \dfrac{u}{a} + C .

\int \dfrac{1}{\sqrt{u^2 - a^2}} du = \ln | u+\sqrt{u^2-a^2} | + C .

\int \sqrt{u^2 - a^2} du = \dfrac{u}{2} \sqrt{u^2 - a^2} - \dfrac{a^2}{2} \ln | u + \sqrt{u^2 - a^2} | + C .

Reference

Dennis G. Zill. Advanced Engineering Mathematics, 6^{th} edition. Jones & Bartlett Learning. 2016.